Global Journal of Engineering Science and Researches A STUDY OF APPLICATIONS OF A CERTAIN GENERALIZED HYPERGEOMETRIC FUNCTIONS IN A SLIGHTLY DIFFERENT TYPE GAMMA DENSITY MODEL
 Yashwant Singh

Government College, Kaladera, Jaipur, Rajasthan, India

Abstract

In the present paper, the author has studied about the structures which are the products and ratios of statistically independently distributed positive real scalar random variables. The author has derived the exact density of Generalized Gamma density by the Mellin Transform and Hankel Tranform of the unknown density and after that the unknown density has been derived in terms of H - functions by taking the inverse Mellin transform and Inverse Hankel Transform .A more general structure of generallized Gamma density has also been discussed.

Keywords: Generalized Gamma Density, Wright's Generalized Hypergeometric Function, H-function, Mellin Transform, Inverse Mellin Transform, Hankel Transform, Inverse Hankel Transform. (2010 Mathematics Subject Classification: 33CXX, 44A15, 82XX).

I. INTRODUCTION

Generalized Wright's function ${ }_{2} R_{1}(a, b ; c, w ; \mu ; z)$ defined by Dotsenko [1, 2] hs been denoted as

$$
\begin{align*}
&{ }_{2} R_{1}(a, b ; c, w ; \mu ; z)=\frac{\Gamma(c)}{\Gamma(a) \Gamma(b)} \sum_{k=0}^{\infty} \frac{\Gamma(a+k) \Gamma\left(b+k \frac{w}{\mu}\right)}{\Gamma\left(c+k \frac{w}{\mu}\right)} \frac{z^{k}}{k!} \\
&=\frac{\Gamma(c)}{\Gamma(a) \Gamma(b)}{ }_{2} \psi_{1}\left[z \left\lvert\,\left(c, \frac{w}{\mu}\right)\right.\right. \tag{1.1}
\end{align*} \sum_{(a, 1),\left(b, \frac{w}{\mu}\right)}^{(c)} .
$$

The H-function is defined by means of a Mellin-Barnes type integral in the following manner (Mathai and Saxena, 1978):

$$
\begin{align*}
H(z) & =H_{p, q}^{m, n}(z)=H_{p, q}^{m, n}\left[\left.z\right|_{\left(b_{q}, B_{q}\right)} ^{\left(a_{p}, A_{p}\right)}\right] \\
& =H_{p, q}^{m, n}\left[\left.z\right|_{\left(b_{1}, B_{1}\right), \ldots,\left(b_{q}, B_{q}\right)} ^{\left(a_{1}, A_{1}\right), \ldots,\left(a_{p}, A_{p}\right)}\right]=\frac{1}{2 \pi i} \int_{L} \theta(s) z^{-s} d s \tag{1.2}
\end{align*}
$$

Where $i=\sqrt{-1}, z \neq 0$ and $z^{-s}=\exp [-\sin |z|+i \arg z]$ where $|z|$ represents the natural logarithim of $|z|$ and $\arg z$ is not the principal value. Here
$\theta(s)=\frac{\prod_{j=1}^{m} \Gamma\left(b_{j}+B_{j} s\right) \prod_{j=1}^{n} \Gamma\left(1-a_{j}-A_{j} s\right)}{\prod_{j=m+1}^{q} \Gamma\left(1-b_{j}-B_{j} s\right) \prod_{j=n+1}^{p} \Gamma\left(a_{j}+A_{j} s\right)}$
[Singh, 6(6): June 2019]
ISSN 2348-8034
DOI- 10.5281/zenodo. 3241890
The Mellin transform of $f(x)$ denoted by $M\{f(x) ; s\}$ or $F(s)$ is given by

$$
\begin{equation*}
M\{f(x) ; s\}=\int_{0}^{\infty} x^{s-1} f(x) d x \tag{1.4}
\end{equation*}
$$

The Hankel transform of $f(x)$ denoted by $H_{v}\{f(x) ; p\}$ or $F_{v}(p)$ is given by

$$
\begin{equation*}
H_{v}\{f(x) ; p\}=\int_{0}^{\infty} x J_{v}(p x) f(x) d x \tag{1.5}
\end{equation*}
$$

II. GENERAL STRUCTURES

A real scalar random variable x is said to have a generalized gamma distribution, when the density is of the following form:

$$
f(x)=\left\{\begin{array}{l}
\frac{\beta A^{\frac{\alpha+m}{\beta}}}{\Gamma\left(\frac{\alpha+t m}{\beta}\right)_{2} R_{1}(a, b ; c, w ; \mu ; p)} x^{\alpha-1} e^{-\alpha \mu^{\beta}}{ }_{2} R_{1}\left(a, b ; c, w ; \mu ; p x^{t}\right) ; x>0, A>0, \alpha>0, \beta>0 \tag{2.1}\\
0, \text { elsewhere }
\end{array}\right.
$$

Where the parameters α and β are real. The following discussion holds even when α and β are complex quantities. In this case, the conditions become $\operatorname{Re}(\alpha)>0, \operatorname{Re}(\beta)>0$ where $\operatorname{Re}($.$) means the real part of (.).$
Let E denote the mathematical expectation, the $h^{\text {th }}$-moment of x, when x has the density in (2.1), is given by

$$
\begin{equation*}
E\left(x^{h}\right)=\frac{1}{A^{\frac{h}{\beta}}} \frac{\Gamma\left(\frac{\alpha+t m+h}{\beta}\right)}{\Gamma\left(\frac{\alpha+t m}{\beta}\right)} \tag{2.2}
\end{equation*}
$$

For $\operatorname{Re}(\alpha+t m+h)>0$.
When α and h are real, the moments can exist for some values of h also such that $\alpha+h>0$.
The Mellin transform of $f(x)$ is obtained from (2.2) as:

$$
\begin{equation*}
M\{f(x)\}=E\left(x^{s-1}\right)=\frac{1}{A^{\frac{s-1}{\beta}}} \frac{\Gamma\left(\frac{\alpha+t m+s-1}{\beta}\right)}{\Gamma\left(\frac{\alpha+t m}{\beta}\right)} \tag{2.3}
\end{equation*}
$$

For $\operatorname{Re}(\alpha+t m+s-1)>0, s=v+2 r+2$.
[Singh, 6(6): June 2019]
ISSN 2348-8034
DOI- 10.5281/zenodo. 3241890
Impact Factor- $\mathbf{5 . 0 7 0}$
The unknown density $f(x)$ is obtained in terms of H-function by taking the inverse Mellin transform of (2.3). That is

$$
f(x)=\frac{1}{A^{\frac{-1}{\beta}} \Gamma\left(\frac{\alpha+t m}{\beta}\right)} H_{0,1}^{1,0}\left[A^{\frac{1}{\beta}} x \left\lvert\, \begin{array}{c}
\left(\frac{\alpha+t m-1}{\beta}, \frac{1}{\beta}\right) \tag{2.4}
\end{array}\right.\right]
$$

The Hankel transform of $f(x)$ is obtained from (2.2) as:

$$
\begin{equation*}
H\{f(x)\}=E\left(x J_{v}(p x)\right)=J_{v}(p) \frac{1}{A^{\frac{s-1}{\beta}}} \frac{\Gamma\left(\frac{\alpha+t m+s-1}{\beta}\right)}{\Gamma\left(\frac{\alpha+t m}{\beta}\right)} \tag{2.5}
\end{equation*}
$$

For $\operatorname{Re}(\alpha+t m+s-1)>0, s=v+2 r+2$.
The unknown density $f(x)$ is obtained in terms of H-function by taking the inverse Hankel transform of (2.5). That is
$f(x)=J_{v}(p) \frac{1}{A^{\frac{-1}{\beta}} \Gamma\left(\frac{\alpha+t m}{\beta}\right)} H_{0,1}^{1,0}\left[A^{\frac{1}{\beta}} x \left\lvert\, \begin{array}{c|c}--- \\ \left(\frac{\alpha+t m-1}{\beta}, \frac{1}{\beta}\right)\end{array}\right.\right]$
Consider a set of real scalar random variables x_{1}, \ldots, x_{k}, mutually independently distributed, where x_{j} has the density in (2.1) with the parameters $\alpha_{j}, \beta_{j} ; j=1, \ldots, k$ and consider the product

$$
\begin{equation*}
u=x_{1} x_{2} \ldots x_{k} \tag{2.7}
\end{equation*}
$$

In the standard terminology in statistical literature, the $h^{\text {th }}$ moment of u, when u has the density in (2.1), is given by

$$
\begin{equation*}
E\left(u^{h}\right)=\prod_{j=1}^{k} \frac{1}{A^{\frac{h}{\beta_{j}}}} \frac{\Gamma\left(\frac{\alpha_{j}+t m+h}{\beta_{j}}\right)}{\Gamma\left(\frac{\alpha_{j}+t m}{\beta_{j}}\right)} \tag{2.8}
\end{equation*}
$$

For $\operatorname{Re}\left(\alpha_{j}+t m+h\right)>0 ; j=1, \ldots, k$
Then the Mellin transform of $g(u)$ of u is obtained from the property of the statistical independent and is given by $M[g(u)]=M\left[x_{1}^{s-1}\right] \ldots M\left[x_{k}^{s-1}\right]$
[Singh, 6(6): June 2019]
ISSN 2348-8034
DOI- 10.5281/zenodo. 3241890

$$
\begin{equation*}
E\left(u^{s-1}\right)=\prod_{j=1}^{k} \frac{1}{A^{\frac{s-1}{\beta_{j}}}} \frac{\Gamma\left(\frac{\alpha_{j}+t m+s-1}{\beta_{j}}\right)}{\Gamma\left(\frac{\alpha_{j}+t m}{\beta_{j}}\right)} \tag{2.10}
\end{equation*}
$$

For $\operatorname{Re}\left(\alpha_{j}+t m+s-1\right)>0, s=v+2 r+2$
The unknown density $f(x)$ is obtained in terms of H-function by taking the inverse Mellin transform of (2.10). That is

$$
\begin{equation*}
g(u)=\frac{1}{A^{\frac{-1}{\beta}} \Gamma\left(\frac{\alpha_{j}+t m}{\beta_{j}}\right)} H_{0, k}^{k, 0}\left[\left.\prod_{j=1}^{k} A^{\frac{1}{\beta}} u\right|_{\left(\frac{\alpha_{j}+t m-1}{\beta_{j}}, \frac{1}{\beta_{j}}\right)} ; j=1, \ldots, k\right] \tag{2.11}
\end{equation*}
$$

For $\beta_{j}=1 ; j=1, \ldots, k$, the H-function reduces to the G-function.
Then the Hankel transform of $g(u)$ of u is obtained from the property of the statistical independent and is given by:

$$
\begin{equation*}
H\left[u J_{v}(p u)\right]=H\left[x_{1} J_{v}\left(p x_{1}\right)\right] H\left[x_{2} J_{v}\left(p x_{2}\right)\right] \ldots H\left[x_{k} J_{v}\left(p x_{k}\right)\right] \tag{2.12}
\end{equation*}
$$

$=J_{v}(p) \prod_{j=1}^{k} \frac{1}{A^{\frac{s-1}{\beta_{j}}}} \frac{\Gamma\left(\frac{\alpha_{j}+t m+s-1}{\beta_{j}}\right)}{\Gamma\left(\frac{\alpha_{j}+t m}{\beta_{j}}\right)}$
For $\operatorname{Re}\left(\alpha_{j}+t m+s-1\right)>0, s=v+2 r+2$
The unknown density $f(x)$ is obtained in terms of H-function by taking the inverse Hankel transform of (2.13). That is

$$
g(u)=J_{v}(p) \prod_{j=1}^{k} \frac{1}{A^{\frac{-1}{\beta_{j}}} \Gamma\left(\frac{\alpha_{j}+t m}{\beta_{j}}\right)} H_{0, k}^{k, 0}\left[\prod_{j=1}^{k} A^{\frac{1}{\beta_{j}}} u \left\lvert\, \begin{array}{|c}
\left(\frac{\alpha_{j}+t m-1}{\beta_{j}}, \frac{1}{\beta_{j}}\right) \tag{2.14}
\end{array}\right. ; j=1, \ldots, k\right]
$$

For $\beta_{j}=1 ; j=1, \ldots, k$, the H-function reduces to the G-function.
If we consider more general structures in the same category. For example, consider the structure
$u_{1}=x_{1}^{\gamma_{1}} x_{2}^{\gamma_{2}} \ldots x_{k}^{\gamma_{k}}, \gamma_{k}>0, j=1, \ldots, k$

RESEARCHERID

[Singh, 6(6): June 2019]
DOI- 10.5281/zenodo. 3241890
Where x_{1}, \ldots, x_{k} are mutually independently distributed as in (2.5).

Then the Mellin transform of $g\left(u_{1}\right)$ of u_{1} is given as

$$
\begin{align*}
& M\left[g\left(u_{1}\right)\right]=M\left[x_{1}^{\gamma_{1}(s-1)}\right] \ldots M\left[x_{k}^{\gamma_{k}(s-1)}\right] \tag{2.16}\\
& E\left(u_{1}^{s-1}\right)=\prod_{j=1}^{k} \frac{1}{A^{\frac{\gamma_{j}(s-1)}{\beta_{j}}}} \frac{\Gamma\left(\frac{\alpha_{j}+t m+\gamma_{j}(s-1)}{\beta_{j}}\right)}{\Gamma\left(\frac{\alpha_{j}+t m}{\beta_{j}}\right)} \tag{2.17}
\end{align*}
$$

For $\operatorname{Re}\left(\alpha_{j}+t m+s-1\right)>0, s=v+2 r+2, \gamma_{j}>0$.
The unknown density $g\left(u_{1}\right)$ is obtained in terms of H-function by taking the inverse Mellin transform of (2.17). That is

$$
g\left(u_{1}\right)=\frac{1}{A^{\frac{-\gamma_{j}}{\beta}} \Gamma\left(\frac{\alpha_{j}+t m}{\beta_{j}}\right)} H_{0, k}^{k, 0}\left[\prod_{j=1}^{k} A^{\frac{\gamma_{j}}{\beta}} u_{1} \left\lvert\, \begin{array}{l}
\left(\frac{\alpha_{j}+t m-\gamma_{j}}{\beta_{j}}, \frac{\gamma_{j}}{\beta_{j}}\right) \tag{2.18}
\end{array}\right. ; j=1, \ldots, k\right]
$$

For $\beta_{j}=1=\gamma_{j} ; j=1, \ldots, k$, the H-function reduces to the G-function.

Then the Hankel transform of $g\left(u_{1}\right)$ of u_{1} is obtained from the property of the statistical independent and is given by:

$$
\begin{gather*}
H\left[u_{1} J_{v}\left(p u_{1}\right)\right]=H\left[x_{1}^{\gamma_{1}} J_{v}\left(p x_{1}^{\gamma_{1}}\right)\right] H\left[x_{2}^{\gamma_{1}} J_{v}\left(p x_{2}^{\gamma_{2}}\right)\right] \ldots H\left[x_{k}^{\gamma_{1}} J_{v}\left(p x_{k}^{\gamma_{k}}\right)\right] \tag{2.19}\\
==J_{v}(p) \prod_{j=1}^{k} \frac{1}{A^{\frac{\gamma_{j}(s-1)}{\beta_{j}}}} \frac{\Gamma\left(\frac{\alpha_{j}+t m+\gamma_{j}(s-1)}{\beta_{j}}\right)}{\Gamma\left(\frac{\alpha_{j}+t m}{\beta_{j}}\right)} \tag{2.20}
\end{gather*}
$$

For $\operatorname{Re}\left(\alpha_{j}+t m+s-1\right)>0, s=v+2 r+2, \gamma_{j}>0$
The unknown density $g\left(u_{1}\right)$ is obtained in terms of H-function by taking the inverse Hankel transform of (2.20). That is
[Singh, 6(6): June 2019]
ISSN 2348-8034
DOI- 10.5281/zenodo. 3241890
Impact Factor- 5.070

$$
\begin{equation*}
g\left(u_{1}\right)=J_{v}(p) \prod_{j=1}^{k} \frac{1}{A^{\frac{-\gamma_{j}}{\beta_{j}}} \Gamma\left(\frac{\alpha_{j}+t m}{\beta_{j}}\right)} H_{0, k}^{k, 0}\left[\prod_{j=1}^{k} A^{\frac{\gamma_{j}}{\beta_{j}}} u_{1} \left\lvert\, \frac{--}{\left(\frac{\alpha_{j}+t m-\gamma_{j}}{\beta_{j}}, \frac{\gamma_{j}}{\beta_{j}}\right)}\right. ; j=1, \ldots, k\right] \tag{2.21}
\end{equation*}
$$

For $\operatorname{Re}\left(\alpha_{j}+t m+s-1\right)>0, s=v+2 r+2, \gamma_{j}>0$
For $\beta_{j}=1=\gamma_{j} ; j=1, \ldots, k$, the H-function reduces to the G-function.

A More General Structure

We can consider more general structures. Let

$$
\begin{equation*}
w=\frac{x_{1}, x_{2}, \ldots, x_{r}}{x_{r+1}, \ldots, x_{k}} \tag{2.22}
\end{equation*}
$$

Where x_{1}, \ldots, x_{k}, mutually independently distributed real random variables having the density in (2.1) with x_{j} having parameters $\alpha_{j}, \beta_{j} ; j=1, \ldots, k$.

Then the Mellin transform of $g(w)$ is given by

$$
\begin{align*}
& M[g(w)]=M\left[x_{1}^{s-1}\right] \ldots M\left[x_{r}^{s-1}\right] M\left[x_{r+1}^{-(s-1)}\right] \ldots M\left[x_{k}^{-(s-1)}\right] \tag{2.23}\\
& \quad=\prod_{j=1}^{k} \frac{A^{\frac{1}{\beta_{j}}}}{\Gamma\left(\frac{\alpha_{j}+t m}{\beta_{j}}\right)}\left\{\prod_{j=1}^{r} \frac{\Gamma\left(\frac{\alpha_{j}+t m+s-1}{\beta_{j}}\right)}{A^{\frac{s}{\beta_{j}}}}\right\}\left\{\prod_{j=r+1}^{k} \frac{\Gamma\left(\frac{\alpha_{j}+t m-s+1}{\beta_{j}}\right)}{A^{\frac{-s}{\beta_{j}}}}\right\} \tag{2.24}
\end{align*}
$$

For $\operatorname{Re}\left(\alpha_{j}+t m \pm(s-1)\right)>0, s=v+2 r+2$.
The unknown density $g(w)$ is obtained in terms of H-function by taking the inverse Mellin transform of (2.24). That is

$$
\left.\left.\left.\left.\begin{array}{rl}
g(w)= & \prod_{j=1}^{k} \frac{1}{A^{\frac{-1}{\beta}} \Gamma\left(\frac{\alpha_{j}+t m}{\beta_{j}}\right)}\left\{H _ { 0 , r } ^ { r , 0 } \left[\prod_{j=1}^{r} A^{\frac{1}{\beta}} w \left\lvert\,\left(\frac{\alpha_{j}+t m-1}{\beta_{j}}, \frac{1}{\beta_{j}}\right)\right.\right.\right.
\end{array} ; j=1, \ldots, r\right]\right\}\right\}\right\}
$$

[Singh, 6(6): June 2019]
ISSN 2348-8034
DOI- 10.5281/zenodo. 3241890
Impact Factor- 5.070
For $\operatorname{Re}\left(\alpha_{j}+t m \pm(s-1)\right)>0, s=v+2 r+2$.
For $\beta_{j}=1=\gamma_{j} ; j=1, \ldots, k$, the H-function reduces to the G-function.
The Hankel transform of $g(w)$ is given as:

$$
\begin{align*}
& H\left[w J_{v}(p w)\right]=H\left[x_{1} J_{v}\left(p x_{1}\right)\right] \ldots H\left[x_{r} J_{v}\left(p x_{r}\right)\right] \\
& H\left[x_{r+1}^{-1} J_{v}\left(p x_{r+1}^{-1}\right)\right] \ldots H\left[x_{k}^{-1} J_{v}\left(p x_{k}^{-1}\right)\right] \tag{2.26}\\
& =J_{v}(p) \prod_{j=1}^{k} \frac{A^{\frac{1}{\beta_{j}}}}{\Gamma\left(\frac{\alpha_{j}+t m}{\beta_{j}}\right)}\left\{\prod_{j=1}^{r} \frac{\Gamma\left(\frac{\alpha_{j}+t m+s-1}{\beta_{j}}\right)}{A^{\frac{s}{\beta_{j}}}}\right\}\left\{\prod_{j=r+1}^{k} \frac{\Gamma\left(\frac{\alpha_{j}+t m-s+1}{\beta_{j}}\right)}{A^{\frac{-s}{\beta_{j}}}}\right\} \tag{2.27}
\end{align*}
$$

For $\operatorname{Re}\left(\alpha_{j}+t m \pm(s-1)\right)>0, s=v+2 r+2$.
The unknown density $g(w)$ is obtained in terms of H-function by taking the inverse Hankel transform of (2.27). That is

$$
\begin{gather*}
\left.g(w)=J_{v}(p) \prod_{j=1}^{k} \frac{1}{A^{\frac{-1}{\beta}} \Gamma\left(\frac{\alpha_{j}+t m}{\beta_{j}}\right)}\left\{H_{0, r}^{r, 0}\left[\prod_{j=1}^{r} A^{\frac{1}{\beta}} w \left\lvert\, \frac{\left(\frac{\alpha_{j}+t m-1}{\beta_{j}}, \frac{1}{\beta_{j}}\right)}{}\right.\right) ; j=1, \ldots, r\right]\right\} \\
\left\{H_{k-r, 0}^{0, k-r}\left[\prod_{j=r+1}^{k} A^{-\frac{1}{\beta}} w \left\lvert\,\left(\begin{array}{l}
1--\frac{\alpha_{j}+t m+1}{\beta_{j}}, \frac{1}{\beta_{j}}
\end{array} ; j=r+1, \ldots, k\right]\right.\right\}\right. \tag{2.28}
\end{gather*}
$$

For $\operatorname{Re}\left(\alpha_{j}+t m \pm(s-1)\right)>0, s=v+2 r+2$.
For $\beta_{j}=1=\gamma_{j} ; j=1, \ldots, k$, the H-function reduces to the G-function.
Now, we consider more general structures in the same category. For example, consider the structure
$w_{1}=\frac{x_{1}^{\gamma_{1}}, \ldots, x_{r}^{\gamma_{r}}}{x_{r+1}^{\gamma_{r+1}}, \ldots, x_{k}^{k}}$

Where x_{1}, \ldots, x_{k}, mutually independently distributed real random variables having the density in (2.1) with x_{j} having parameters $\alpha_{j}, \beta_{j} ; j=1, \ldots, k$.

Then the Mellin transform of $g\left(w_{1}\right)$ is given by
[Singh, 6(6): June 2019]
ISSN 2348-8034
DOI- 10.5281/zenodo. 3241890
Impact Factor- 5.070
$M\left[g\left(w_{1}\right)\right]=M\left[x_{1}^{\gamma_{1}(s-1)}\right] \ldots M\left[x_{r}^{\gamma_{r}(s-1)}\right] M\left[x_{r+1}^{-\gamma_{r+1}(s-1)}\right] \ldots M\left[x_{k}^{-\gamma_{k}(s-1)}\right]$
$=\prod_{j=1}^{k} \frac{A^{\frac{\delta_{j}}{\beta_{j}}}}{\Gamma\left(\frac{\alpha_{j}+t m}{\beta_{j}}\right)}\left\{\prod_{j=1}^{r} \frac{\Gamma\left(\frac{\alpha_{j}+t m+\delta_{j}(s-1)}{\beta_{j}}\right)}{A^{\frac{s \delta \delta_{j}}{\beta_{j}}}}\right\}\left\{\prod_{j=r+1}^{k} \frac{\Gamma\left(\frac{\alpha_{j}+t m-\delta_{j}(s-1)}{\beta_{j}}\right)}{A^{\frac{-s \delta_{j}}{\beta_{j}}}}\right\}$
For $\operatorname{Re}\left(\alpha_{j}+t m \pm(s-1)\right)>0, s=v+2 r+2, \delta_{j}>0$.
The unknown density $g\left(w_{1}\right)$ is obtained in terms of H-function by taking the inverse Mellin transform of (2.31). That is

$$
\left.\left.\begin{array}{c}
g\left(w_{1}\right)=\prod_{j=1}^{k} \frac{1}{A^{\frac{-\delta_{j}}{\beta}} \Gamma\left(\frac{\alpha_{j}+t m}{\beta_{j}}\right)}\left\{H _ { 0 , r } ^ { r , 0 } \left[\prod_{j=1}^{r} A^{\frac{\delta_{j}}{\beta}} w_{1} \left\lvert\,\left(\frac{\alpha_{j}+t m-\delta_{j}}{\beta_{j}}, \frac{\delta_{j}}{\beta_{j}}\right)\right.\right.\right.
\end{array} j=1, \ldots, r\right]\right\}
$$

For $\operatorname{Re}\left(\alpha_{j}+t m \pm(s-1)\right)>0, s=v+2 r+2, \delta_{j}>0$.
For $\beta_{j}=1=\gamma_{j} ; j=1, \ldots, k$, the H-function reduces to the G-function.
Then the Hankel transform of $g\left(w_{1}\right)$ is given as:

$$
\begin{align*}
& H\left[w_{1} J_{v}\left(p w_{1}\right)\right]=H\left[x_{1}^{\gamma_{1}} J_{v}\left(p x_{1}^{\gamma_{1}}\right)\right] \ldots H\left[x_{r}^{\gamma_{r}} J_{v}\left(p x_{r}^{\gamma_{r}}\right)\right] \\
& H\left[x_{r+1}^{-\gamma_{r+1}} J_{v}\left(p x_{r+1}^{-\gamma_{r+1}}\right)\right] \ldots H\left[x_{k}^{-\gamma_{k}} J_{v}\left(p x_{k}^{-\gamma_{k}}\right)\right] \tag{2.33}\\
& =J_{v}(p) \prod_{j=1}^{k} \frac{A^{\frac{\delta_{j}}{\beta_{j}}}}{\Gamma\left(\frac{\alpha_{j}+t m}{\beta_{j}}\right)}\left\{\prod_{j=1}^{r} \frac{\Gamma\left(\frac{\alpha_{j}+t m+\delta_{j}(s-1)}{\beta_{j}}\right)}{A^{\frac{s j_{j}}{\beta_{j}}}}\right\}\left\{\prod_{j=r+1}^{k} \frac{\Gamma\left(\frac{\alpha_{j}+t m-\delta_{j}(s-1)}{\beta_{j}}\right)}{A^{\frac{-s \delta_{j}}{\beta_{j}}}}\right\} \tag{2.34}
\end{align*}
$$

For $\operatorname{Re}\left(\alpha_{j}+t m \pm(s-1)\right)>0, s=v+2 r+2, \delta_{j}>0$.
The unknown density $g\left(w_{1}\right)$ is obtained in terms of H-function by taking the inverse Hankel transform of (2.34). That is

THOMSON REUTERS
[Singh, 6(6): June 2019]
ISSN 2348-8034
DOI- 10.5281/zenodo. 3241890

$$
\left.\left.\begin{array}{c}
g\left(w_{1}\right)=J_{v}(p) \prod_{j=1}^{k} \frac{1}{A^{\frac{-\delta_{j}}{\beta}} \Gamma\left(\frac{\alpha_{j}+t m}{\beta_{j}}\right)}\left\{H_{0, r}^{r, 0}\left[\prod_{j=1}^{r} A^{\frac{\delta_{j}}{\beta}} w_{1} \left\lvert\, \frac{-\cdots-}{\left(\frac{\alpha_{j}+t m-\delta_{j}}{\beta_{j}}, \frac{\delta_{j}}{\beta_{j}}\right)}\right. ; j=1, \ldots, r\right]\right\} \\
\left\{H _ { k - r , 0 } ^ { 0 , k - r } \left[\prod_{j=r+1}^{k} A^{-\frac{\delta_{j}}{\beta}} w_{1} \left\lvert\,\left(1-\frac{\alpha_{j}+t m+\delta_{j}}{\beta_{j}}, \frac{\delta_{j}}{\beta_{j}}\right)\right.\right.\right. \tag{2.35}
\end{array} j=r+1, \ldots, k\right]\right\}, ~ \$
$$

For $\operatorname{Re}\left(\alpha_{j}+t m \pm(s-1)\right)>0, s=v+2 r+2, \delta_{j}>0$.
For $\beta_{j}=1=\gamma_{j} ; j=1, \ldots, k$, the H-function reduces to the G-function.

REFERENCES

1. Dotsenko, M.R.; On some applications of Wright's hypergeometric function, CR Acad. Bulgare Sci. 44(1991), 13-16.
2. Dotsenko, M.R.; On an integral transform with Wright's hypergeometric function, Mat. Fiz. Nelilein Mekh 18(52), (1993), 17-52.
3. Mathai, A.M.; A pathway to matrix-variate gamma and normal densities, Linear Alg. Appl. 396 (2005), 317328.
4. Mathai, A.M. and Saxena, R.K.; The H-function with Applications in Statistics and Other Disciplines, Wiley Eastern, New Delhi and Wiley Halsted, New York (1978).
5. Mathai, A.M., Saxena, R.K. and Haubold, H.J.; The H-function: Theory and Applications, CRC Press, New York (2010).
6. Srivastava, H.M., Gupta, K.C. and Goyal, S.P.; The H-function of One and Two Variables With Applications, South Asian Publisher, New Delhi, (1982).
